
For Review
 O

nly

Innovative Management of Remote Future Internet

Experimentation over Mobile Nodes

Journal: IEEE Internet of Things Journal

Manuscript ID IoT-0962-2016

Manuscript Type: Regular Article

Date Submitted by the Author: 09-Mar-2016

Complete List of Authors: Panagidi, Kyriaki; National and Kapodistrian University of Athens,
Informatics and Telecommunications
Kapoutsis, Athanasios; Democritus University of Thrace, Electrical and
Computer Engineering; Centre for Research and Technology-Hellas
Informatics and Telematics Institute, Information Technologies Institute
Kolomvatsos, kostas; National and Kapodistrian University of Athens,
Informatics and Telecommunications
Chatzichristofis, Savvas; Democritus University of Thrace, Electrical and
Computer Engineering; Centre for Research and Technology-Hellas
Informatics and Telematics Institute, Information Technologies Institute
Tusa, Giovanni; IES Solutions — Intelligence for Environment and Security
Heckel, Marcel; Fraunhofer Institute for Transportation and Infrastructure
Systems
Ramapuram, Jason-Emmanuel; Hautes Ecoles Spécialisées Genève HES-SO
Kosmatopoulos, Elias; Democritus University of Thrace, Electrical and
Computer Engineering; Centre for Research and Technology-Hellas
Informatics and Telematics Institute, Information Technologies Institute
Hadjiefthymiades, Stathes; National and Kapodistrian University of Athens,
Informatics and Telecommunications

Keywords:

Test-bed and Trials < Sub-Area 3: Services, Applications, and Other Topics
for IoT, Service Middleware and Platform < Sub-Area 3: Services,
Applications, and Other Topics for IoT, Application Platform < Sub-Area 3:
Services, Applications, and Other Topics for IoT, Network Architecture <
Sub-Area 2: Communications and Networking for IoT, Service-Oriented
Architecture < Sub-Area 3: Services, Applications, and Other Topics for
IoT, Future Internet < Sub-Area 2: Communications and Networking for
IoT

For Review
 O

nly

IEEE INTERNET OF THINGS JOURNAL 1

Innovative Management of Remote Future Internet
Experimentation over Mobile Nodes

K. Panagidi, A. Kapoutsis, K. Kolomvatsos, S. Chatzichristofis, G. Tusa, M. Heckel, J. Ramapuram, E.
Kosmatopoulos, S. Hadjiefthymiades

Abstract—Mobile IoT applications realize an innovative field
where numerous moving devices collect, process and exchange
huge amounts of data with central systems or their peers. Novel
applications could be built on top of this setting that aim to
facilitate people’s lives and produce new products. Some of the
potential applications are real-time marketing support, enhanced
situational awareness, intelligent decision analytics on top of
sensors measurements and so on. For engineering novel applica-
tions, experimentation plays a significant role. Especially, when
experimentation is performed remotely, it offers many advantages
while reducing the cost and the efforts spent to realize physical
experimentation. In this paper, we present the experimentation
and the resources (i.e., mobile devices / nodes) management
proposed by Road-, Air- and Water-based Future Internet Exper-
imentation (RAWFIE). RAWFIE aims to interconnect numerous
devices in the form of testbeds where experiments will take place.
It offers an editor where experimenters can remotely insert their
experiments and a set of powerful components responsible to
handle the underlying architecture. Among them, the resource
controller is responsible to manage the available devices and
transform the experiments commands into to commands executed
by the nodes. Hence, through a user friendly environment,
the complexity of the devices and the underlying architecture
is hidden from experimenters offering an efficient scheme for
remotely experimenting with devices and managing the observed
data.

Index Terms—Future internet experimentation, Cloud based
Robotics platform

I. INTRODUCTION

S INCE the 1970s, autonomous robots have been in daily
use at any altitude, for deep-sea and space exploration

as well as in almost all aircraft [1]. The last decades, an
increasing interest has been recorded on the exploitation of
unmanned vehicles in fields such as environmental monitor-
ing [2], commercial air surveillance [3], domestic policing,
geophysical surveys, disaster relief, scientific research, civilian
casualties, search and rescue operations, archaeology, maritime
patrol, seabed mapping, traffic management, etc. Regardless
the domain (i.e., aerial, ground or surface) that they belong
to, the key elements that distinguish them as the leading edge
of their technology are the provided degree of autonomy (i.e.,
the ability to make decisions without human intervention), the
endurance and the payload that they can support.

The mobile IoT paradigm introduces many different techni-
cal challenges that call for efficient solutions either horizon-
tally (application-neutral) or vertically (application-specific).
Such challenges are faced continuously by researchers and
innovators Worldwide. In this domain, experimentation is a
key component of engineering novel applications. Remote

experimentation can offer many advantages as physical exper-
imentation is expensive, difficult to maintain and restricted to
specific areas. The Road-, Air- and Water-based Future Inter-
net Experimentation (RAWFIE) platform comes to offer such
functionalities and deliver a framework for interconnecting
numerous testbeds over which remote experimentation will be
realized. RAWFIE platform originates in a European Union-
funded (H2020 call: FIRE+ initiative) project which focuses on
the mobile Internet of Things (IoT) paradigm and provides re-
search and experimentation facilities through the ever growing
domain of unmanned networked devices (vehicles). The IoT
paradigm can support an intelligent network which connects
all things to the Internet for the purpose of exchanging infor-
mation and communicating through the information sensing
devices in accordance with agreed protocols [4]. IoT imagines
a not so distant future, in which the objects of ordinary
life will be equipped with microcontrollers, transceivers for
computerized correspondence, and suitable protocol stacks that
will make them ready to communicate with one another and
with the users, becoming an integral part of the Internet [5][6].

As trillions of mobile things will be connected to the
Internet, it is necessary to have an adequate architecture that
permits easy connectivity, control, communications, and useful
applications [7]. This paper aims at providing a consolidated
architecture for RAWFIE paying special attention on the
resource management and the creation of experiments over
multiple testbeds interconnected in the RAWFIE framework.
The purpose of the proposed structure is to create a federation
of different network testbeds that work together to make
their resources available under a common framework. Specifi-
cally, it aims at delivering a unique, mixed experimentation
environment across the space and technology dimensions.
RAWFIE integrates numerous testbeds for experimenting in
vehicular (road), aerial and maritime environments. Support
software for experiment management, data collection and post-
analysis will be virtualized to enable experimentation from
everywhere in the world. The vision of Experimentation-as-a-
Service (EaaS) is promoted through RAWFIE. RAWFIE offers
an Experiment Description Language (EDL), i.e., a Domain
Specific Language (DSL), and an editor devoted to assist non-
experienced users to easily define their experiments. A code
generation component is responsible to translate each experi-
ment expressed in the EDL into the information transferred
to mobile nodes. Hence, RAWFIE efficiently interconnects
experimenters coming from various domains with the node
present in numerous testbeds.

To the best of our knowledge, this paper describes one of

Page 1 of 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

IEEE INTERNET OF THINGS JOURNAL 2

the first future Internet experimentation platform for managing
multiple UxVs (i.e., mobile vehicles of different categories) in
real-world scenarios. It is worth noting that RAWFIE platform
is invariant to the robotic architecture or the distinctive parts
used and can easily incorporate additional test cases with
minimal adaptations, thanks to the fact that the envisaged
platform can easily support the addition of new data formats
for data exchange with UxV nodes. And that only open, not
proprietary solutions are used as far as the communication
between different Tiers is concerned, as it will be more clear
in the following of the document.

The rest of the paper is organized as follows: Section
II presents the related work while Section III provides an
overview over the RAWFIE architecture and its layers. Section
IV outlines the testbeds and resources management process
and Section V discusses the RAWFIE data management ap-
proach. Section VI describes the the experiment management
process while Section VII presents our approach related to
the RAWFIE GUI. Finally, Section VIII draws concluding
remarks.

II. RELATED WORK

There have been several research initiatives in the Future In-
ternet Research & Experimentation (FIRE) open research envi-
ronment1, and especially targeting an heterogeneous Testbeds
Federations, as RAWFIE does. While the RAWFIE architec-
ture has similarities with some of these projects, surely it
targets a special and new idea, which is the use of UxV nodes
in the Testbeds. The federated testbeds manly have in common,
that you can access several testbeds in the federation in a
common way, which reduces the efforts to test an algorithm
in another testbed. RAWFIE transfers this benefit to UxVs
testbed. Examples for these are Fed4FIRE [8], [9], OneLab2

or WISEBED [10].
Fed4FIRE3, the Federation for Future Internet Research

and Experimentation [8], [9], is an Integrating Project (IP)
under the European Unions Seventh Framework Programme
(FP7). The Fed4Fire architecture includes all components
needed for testbeds and resource discovery and provisioning,
experiments monitoring and measurements collection. It con-
siders the use of two specific protocols for Resource Control,
Resource Monitoring and measurements collection, namely the
FRCP and OML protocols. However, OML does not provide
any mechanism for addressing network availability/connection
problems, which will regularly occur with moving UxVs in
RAWFIE. Furthermore, in RAWFIE we start from the idea
to allow the easy integration of any kind of UxVs resources,
therefore no specific data schemas for sending commands or
receiving measurements are imposed, for the communication
with the resources. A message bus based communication
within the testbeds and between the testbed and the middle
tier is just defined, together with a mechanism for allowing
the automatic support of new message schemas as needed by
new resources to be included.

1http://www.ict-fire.eu/home.html
2http://https://www.onelab.eu/
3http://www.fed4fire.eu/

A special idea followed IoT Lab 4 (also accessible via
OneLab), where testbed became crowd sourced via an Android
application that enable the smartphone to be used as testbed
node. To handle the heterogeneous testbeds in a common way,
the testbeds are virtualized via a common API: There are
four individual IoT Lab testbeds. Each one with a different
architecture set of provided functionalities, etc. Each testbed
is responsible for exposing its resources and services over
a commonly understood API. Each testbed is responsible
for dealing with its specific characteristics, such as network
connectivity or its special resources. This virtualization results
in testbeds could be handled in a common way, provide a
Fed4FIRE-compliant point of access to the outside world
with a common addressing scheme for all resources in IoT
Lab and the Resource Directory can be maintained at the
IoT Lab cloud (instead in the TB themselves).The ORBIT
Measurement Library (OML) 5 is used. The networking in
IoTLab is fully based on IPv6. This guaranties interoperability
between multiple physical interfaces (Ethernet, Wi-Fi, Blue-
tooth, IEEE802.15.4, etc) and enables end-to-end connectivity
without the need for a NAT. In addition, IPsec is used to en-
able secure/encrypted communication of potential non-secure
networks. The direct use of OML is not reasonable in the
context of RAWFIE, as OML was initially designed for regular
networks. OML does not provide with any mechanism for
addressing network availability/connection problems, which
will regularly occur with moving UxVs. So OML may only be
used as interface between the Testbed proxy and the Middle
Tier. But inside the testbed, other technologies should be
used to transmit measurements (e.g. messages buses with
persistence). The approach of virtualizing the testbed will
also fit well to RAWFIE, as the different testbeds for the
UxV will be very heterogeneous. So, integrating a testbed
into RAWFIE requires a common interface (e.g. FED4FIRE
compliant) exposed by the Testbed Proxy, which should hide
internal management, networking and other issues. RAWFIE
should also follow the consequent use of IPv6 to address
resources.

The WISEBED6 project was a 3-years EU project (2008 -
2011) funded by the European Commission under the FP7
framework [10]. The aim of the project, was to build a
distributed infrastructure of heterogeneous and interconnected
testbeds, for testing the more recent research results on algo-
rithms and protocols for Wireless Sensor Networks measure-
ments and communication. WISEBED was therefore specifi-
cally focused on the WSN domain, and on the interconnection
of completely separated, and already existing experimentation
platforms, each of them providing its own Web accessing
Portal and software infrastructures. Conversely, RAWFIE will
allow multidisciplinary experiments with potentially unlimited
types of technologies, and will develop a common platform
for the management of a federation of testbeds, by providing
a single point of access and a common software infrastructure
(RAWFIE Frontend, Middle Tier and Data Tier components),

4http://www.iotlab.eu/
5https://mytestbed.net/projects/oml
6http://www.wisebed.eu/

Page 2 of 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

IEEE INTERNET OF THINGS JOURNAL 3

for management, execution and analysis of experiments carried
out using UxV resources which will be available at the
different testbed facilities with minimal adaptations, thanks
to the fact that the envisaged platform can easily support the
addition of new data formats for data exchange with UxV
nodes.

III. ARCHITECTURAL OVERVIEW

A. Framework High Level Description

From the architectural point of view, RAWFIE leverages the
multi-tier design pattern in order to facilitate the implementa-
tion of a highly and easily extensible remote testing platform.
The functionalities for the presentation of the information to
the experimenters, the implementation of the core parts of the
business logic and the software interfaces for the integration
of the different modules along with the data persistence,
are separated in different tiers. More specifically, a specific
Testbed Tier is envisaged for the actual control of the test-bed
resources and the communication with the upper layers. A Web
based Front-End Tier (presentation) allows experimenters
remote access to the platform, authorization and visualization
of the information, and the interaction with test-beds resources.
The Middle Tier implements most of the business logic and,
particularly, the communication between the Front-End and the
Test-bed tiers. The Data Tier will be in charge of ensuring
data persistence. Figure 1 depicts the tiers of the RAWFIE
infrastructure.

RAWFIE follows the Service Oriented Architecture [11]
paradigm: all components provide clearly defined interfaces,
so that they can be easily accessed by other component or they
may be easily replaced by other/better component with the
same interface. The services are described in languages such as
Web Services Description Language (WSDL) [12]. Interacting
with them is made possible by the use of remote service
control protocols such as Simple Object Access Protocol
(SOAP) [12] or the Representational State Transfer (REST)
[13] resource invocation style, which are based on the popular
HTTP.

Additionally, a message-based middleware (via a Message
Bus) is used where suitable. This provides a coherent com-
munication model with distribution, replication, reliability,
availability, redundancy, backup, consistency, and services
across distributed heterogeneous systems. The envisioned mes-
sage bus interconnects all the components and all tiers. It
is used for asynchronous notifications and method calls /
response handling. As such, it may be used for transmitting
measurements that will be routed from producers (e.g., UxVs)
to the consumers pertaining to the Middle tier / Data tier (e.g.,
experiment monitoring, visualisation or data repositories).

B. The RAWFIE Layered Architecture

The RAWFIE architecture consist of four tiers (see Figure
1):

• The Front-end tier: It provides a web based GUI that
enables the user to interact with the RAWFIE system.
The front-end tier includes the services and tools that

RAWFIE provides to the experimenters to define and
perform the experimentation scenarios. The main parts of
this tier are the RAWFIE Portal and the Experimentation
Suite.

• The Middle tier: It involves a collection of services that
provide different management and processing function-
alities. The RAWFIE Middle tier is the layer that lies
between the UxV testbeds and the experimenters (Front-
End tier). It provides the software interfaces needed, and
includes useful software components related to security,
trust, control and visualization aspects. This tier provides
the infrastructure which facilitates the creation and in-
tegration of applications in the RAWFIE platform. As
shown in Figure 1, the RAWFIE middleware is a virtual-
ized infrastructure, i.e., Infrastructure as a Service (IaaS),
indicating the maturity and versatility of the developed
RAWFIE layered architecture. The main modules of the
RAWFIE Middle tier are the Experiment Authorization,
Testbed Directory, Experiment Control and Infrastructure
Monitoring.

• The Testbed tier: It includes the software and hardware
components that are needed to run the testbeds and UxVs.
Testbeds are comprised of various software components
related to the communication with the upper layers (i.e.,
Middle and Front-End Tier), the management of the
infrastructure and the control of the UxV resources.
Each testbed available through the RAWFIE federation is
comprised of nodes with the same ‘x’ type (i.e., ground,
air or water surface) that exploit the same communication
protocols for the ease of their integration in a unified
and fully controllable environment (i.e., testbed). Hence,
every RAWFIE testbed has two main tiers of its own.
The first tier is related to the software components that
must be implemented while the second tier describes the
resources that are provided.

• The Data tier: It is a collection of repositories that
store the different data types generated and collected
by RAWFIE components. All the integrated testbeds
and resources accessible from the federated facilities are
listed. It is a central service that provides the pointers to
the different testbeds belonging to the RAWFIE federa-
tion. The Data tier manages information relevant to the
testbeds and resources (i.e., location, facilities) as well
information on the capabilities of a particular resource
and its requirements for executing experiments e.g., in
terms of interconnectivity or dependencies. The provided
data repositories are accessed whenever an experimenter
wants to retrieve information related to available testbeds
and resources using the respective Front End tool. Data
Tier provides a large, secure, cloud-based central reposi-
tory in which collected data can be anonymized and made
available to users.

IV. RAWFIE TESTBEDS AND RESOURCES MANAGEMENT

A. Testbeds Management

RAWFIE offers a registry service called Testbed Directory
where all the integrated testbeds and resources accessible from

Page 3 of 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

IEEE INTERNET OF THINGS JOURNAL 4

Fig. 1. RAWFIE Architecture.

the federated facilities are listed. The respective tool on the
RAWFIE portals side combines all received lists of testbeds
and resources that are provided by the Testbed Directory
component in a single view. More specifically, the Testbed
Directory can be considered as a central service that exposes
a list of IP addresses corresponding to the integrated testbeds.
These suites gather information related to the testbed that they
monitor which is converted by the Front End tool in a human
readable format (i.e., textual high level description of testbeds
and resources, potential pictures, etc.). The UxV testbeds of
RAWFIE are comprised of various software components re-
lated to the communication with the upper layers (i.e., Middle
and Front-End Tier), the management of the infrastructure and
the control of the UxV resources.

Every testbed that will be provided through RAWFIE to
potential experimenters is enhanced with peripheral compo-
nents that ensure the integration of the infrastructure to the
rest architecture. At the software level, a Testbed Proxy is
developed in every RAWFIE compliant testbed in order to
handle the communication between the facility and the rest
tiers of RAWFIE architecture. The Testbed Proxy lies on the
server side of each testbed facility and ensures the linkage
channels with the Middle and the Front-End tiers. The first
important part of the Testbed Proxy is the Testbed Manager.
It is responsible for the general functionality of the testbed
and its resources. It interfaces a local authorization module

for allowing direct booking and executing RAWFIE compliant
experiments. Every command received from the Ground Con-
trol Module of the middleware is forwarded to the referenced
resource through the exploitation of the Resource Controller
entities. The transformation of the commands to a format that
is understandable from each UxV node is performed by this
component. Moreover, the Testbed Manager is responsible for
data gathering, storing, processing and transmitting them di-
rectly to the experimenter or through the middleware elements.

In addition, RAWFIE offers a monitoring service for the
available testbeds. The Testbed Monitoring Manager acts
as an observer for the seamless operation of the testbeds
resources. It observes and reports the status of the middle
tiers modules while periodically checking the current status
of the available resources in the facility. At the end of
every monitoring ‘era’ the monitoring manager passes the
observation report to the Testbed Manager. Subsequently, this
information is forwarded to higher levels of the RAWFIE
architecture in order to inform them about the availability of
the testbeds resources.

Finally, the Network Controller manages the network con-
nections and the switching between different technologies
in each testbed. For instance, if a problem occurs in the
communication of the resource with the Resource Controller
and subsequently with the Experiment Controller, a fall-back
interface is engaged. Through this procedure, the other net-

Page 4 of 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

IEEE INTERNET OF THINGS JOURNAL 5

working interface/device is enabled to avoid the uncontrolled
operation of the mobile unit and associated damages in the
infrastructure. In addition this component is responsible for
security issues. The switching alternative can be also triggered
by the executed experiment.

B. UxV Resources Management

The other keystone of a testbed facility is the UxV re-
sources. Since the devices provided via the RAWFIE ar-
chitecture (i.e., UxVs) are meant to cover a wide variety
of experimentation/research fields, e.g., mobility, localization,
communication/networking analysis etc., they support an ex-
pandable infrastructure. UxVs are able to provide a scalable
platform with expandable (on demand) networking and smart
sensing facilities along with a rather powerful processing board
to tackle the need of hosting an Operating System (OS).

Each node is equipped with at least two different types
of networking interfaces and is able to support the addition
of extra interfaces in an ‘on demand’ approach. On the one
hand, by adopting such an architecture, every node should be
able to support the sort range communications, i.e., Bluetooth,
ZigBee, Infrared, etc., that may be exploited for intra-UxV
communication. On the other hand, long range networking
interfaces, i.e., IEEE 802.11 WiFi, IEEE 802.16 WiMAX, etc.,
will be utilized as communication channels between the device
and the Testbed Proxy. For instance, the networking interfaces
will assist the over-the-air (OTA) deployment of node-related
applications. Assuming that each UxV platform consists of a
main board, new networking interfaces are able to be plugged
as modules through commonly used connection standards like
USB, etc. The restriction of at least two different networking
modules is mandatory in order to support a network problem
recovery scheme. If there is a problem with the network mod-
ule that is currently exploited for the communication of the
resource with the Testbed Manager and subsequently with the
Experiment Controller, the fall-back mechanism is engaged.
Through this procedure, the other networking interface/device
is enabled to avoid the uncontrolled operation of the mobile
unit and associated damages in the infrastructure.

Every UxV is also accounted as an autonomous sensor
system, thus, enhancing the WSN nature of the integrated
testbeds and the provision of live data streams. Similarly to the
networking layers case, the sensorial system of each node is
quite expandable in terms of sensor additions. Hence, the UxV
board should provide widely accepted connection standards
and communication interfaces, e.g., IEEE 1451, to support
the expansion of the sensor pool. The supported sensors can
be simple, i.e., microsensors that monitor phenomena such as
temperature, humidity, gas, etc., or more advanced like optical
sensors.

Apart from the expandable networking layer, the RAWFIE
UxV nodes will be equipped also with a processing board.
The processing power provided from the embedded processing
unit (e.g., 2-core CPU) will be sufficient to support the
execution of experimental applications that will be hosted in
the installed/supported OS (e.g., Linux). Every resource will
also host some build-in modules/applications that will not

be controllable from the user/experimenter. Such a module
could be a collision checking component which permanently
monitors the obstacles in front (i.e., direction of flight) of the
device and should force the UxV to stop or follow a different
path if a collision is immediately ahead or a power control
component that warns / reacts on a low power status.

The Resource Controller on the UxV node level acts
as an agent/daemon that runs on the resources board and
invokes actions on the request of the experimenter. Through
the module, each resource can be made discoverable to the rest
infrastructure while the access control is also ensured. This
information is published to the Testbed Manager. Moreover,
the Resource Controller is responsible for the dispatch of
information related to the current status of the node (i.e.,
energy reserves, currently active modules, location, velocity
etc.). The Monitoring Module communicates periodically with
the resources (or the categorys) controller and extracts/requests
such information. In addition, the sensed values from the
various smart sensors that lie on the board are published
to the message bus in order to be made available to the
experimenter that initiated/booked the executed experiment.
Finally, the Resource Controller is responsible for receiving
control commands regarding the altering of the nodes course
and fulfils their execution from the referenced resource. If
a resource is not able to finish/execute the requested opera-
tion, the Testbed Manager is informed through the Resource
Controller. The same stands for a successful operation. In
general, the Resource Controller can be considered as a Cloud
Robot and Automation system [14]. The Launching Tool
(see below) interacts with the Experiment Controller (see
below) so as to transfer users preferences and instructions
regarding the experiment. The Experiment Controller initially,
triggers the Experiments and EDL Repository (see below) and
receives the users directions, translated in a form of a set of
waypoints. These waypoints provide basic information about
the preferable locations for each UxV. The set of the waypoints
for each robot defines the path that the experimenters have
shaped. For the navigation of a robot from its current position
to the location described by the next waypoint, the system
requires a turn. The main objective of the Resource Controller
component is to optimize the navigation process which takes
place during a turn. Resource Controller will be able to detect
and identify possible safety violations. If the given instructions
violate the safety constraints, e.g., the experimenter guides two
units at the same position, the Resource Controller identifies
and ignores these directions returning to the portal appropriate
warning messages.

Additionally, the Resource Controller ensures that the sys-
tem is performing as intended. If one of the following
conditions occurs, automatically, the component activates an
emergency scenario.

• The component does not receive any feedback from the
units for several time steps.

• The component receives feedback from the units which
report severe localization issues.

In such a situation, the component collaborates with the
Testbed Proxy so as to navigate the units back to a safe posi-

Page 5 of 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

IEEE INTERNET OF THINGS JOURNAL 6

tion, as soon as possible. In other words, resource controller
transforms the navigation problem into an optimization one,
which in every time step the goal is to optimize the location
of the UxVs so to meet the objectives of the experimenter’s
needs with respect to a set of constraints. In general, the
optimization criterion can be expressed as a function of the
robot’s positions:

Jk = J (xk) (1)

where k = 0, 1, 2, . . . denotes the time-index, Jk denotes
the value of the optimization criterion at the k-th time-step,
xk denote the position of the robot and J is a nonlinear
function which depends – apart from the robot’s positions – on
the particular environment where the robots live; for instance,
it depends on the location of the various obstacles that are
present. At each time-step k, an estimate of Jk is available
through robot’s sensor measurements,

Jn
k = J (xk) + ξk (2)

where Jn
k denotes the estimate of Jk and ξk denotes the noise

introduced in the estimation of Jk due to the presence of noise
in the robot’s sensors.

In other words, at each time-instant k, the vector xk
should satisfy a set of constraints which, in general, can be
represented as follows:

C(xk) ≤ 0 (3)

where C is a set of nonlinear functions of the robot’s
positions. As in the case of J , the function C depends on
the particular environment characteristics (e.g. location of
obstacles as well as the location o the other robots).

Given the mathematical description presented above, the
problem can be mathematically described as the problem of
moving xk to a position that solves the following constrained
optimization problem:

maximize (1)
subject to (3) . (4)

The algorithm to be used is based on the so called Cognitive-
based Adaptive Optimization (CAO) approach [15], [16], [17].
CAO algorithm was originally proposed for the optimization
of functions for which an explicit form is unknown but their
measurements are available as well as for the adaptive fine-
tuning of large-scale nonlinear control systems [18], [19], [20].
In the sequel, the algorithm has been applied in a wide range
of robotics related applications. In [21] CAO was used to
align a team of flying robots so as to perform surveillance
coverage missions over an unknown 3D terrain of complex
and non-convex morphology. In the sequel, CAO was fused in
[22], with a state-of-the-art visual-SLAM algorithm [23] in a
two-step procedure which allowed the alignment of a team of
aerial robots to perform terrain surveillance coverage over a
terrain of arbitrary morphology by using only onboard vision
mechanism. Moreover, CAO was also implemented in the case
of teams Autonomous Underwater Vehicles (AUVs), to fully-
autonomously navigate them when deployed in exploration of

unknown static and dynamic environments towards providing
accurate static and/or dynamic maps of the area [24]. Another
application in the case of mobile robots is presented in
[25], where CAO was utilized to facilitate navigation in an
unknown complex environment, while interacting with humans
considering their comfort. Recently, CAO was employed in
order address a twofold challenge of realistic search and
rescue robotic exploration operations; the ability to efficiently
handle multiple temporal goals while satisfying the mission
constraints [26]. The proposed strategy was able to effectively
address multiple non binary temporal goals utilizing a low
computational cost cognitive optimization algorithm.

The Resource Controller navigates simultaneously all the
units of the squad. It is worth noting that the time needed for
each robot to reach its desired location is not the same for
all units. Thus, the turn concludes when all the robots reach
their next location. Additionally, it is worth mentioning that
in case of emergence, the RC collaborates with the Testbed
Proxy so as to navigate the units back to a safe position, as
soon as possible. A core subcomponent of Resource Controller
is the controller that translates the experimenter’s instructions
into a ‘global form’ of waypoints or mission objectives and
transmits these points or objectives to the controlled units.
In other words, this sub-module converts the experimenter’s
instructions into a reference scheme, compatible with the
build-in navigation system of the UxVs. An existing global
remote controller tool (www.noptilus-fp7.eu) has been already
developed for the guidance of AUVs [27].

V. RAWFIE DATA MANAGEMENT

RAWFIE will support multiple, simultaneous, diverse ex-
periments from physical to application layers. Therefore, the
Experiment Controller includes a service enabling the data
collection, analysis and processing. This service is respon-
sible for storing the measurement streams in the underlying
infrastructure. RAWFIE provides a large, secure, cloud-based
central repository in which collected data can be anonymized
and made available to users. Furthermore, RAWFIE adopts
resource-aware versions of data mining algorithms, which are
appropriate for deployment and execution over the IoT. More
specifically, RAWFIE devices (i.e., UxV resources) that will
make part of the IoT will yield massive volumes of disparate,
dynamic, heterogeneous, and geographically distributed data.
The raw data from such devices are efficiently managed
(cleaned, homogenized, normalized, transformed) to deliver
usable information in order to apply knowledge discovery
and data mining techniques, which can deliver insights. The
developed knowledge discovery algorithms will be able to
model for data dependencies, interactions, redundancies, as
well as for the spatiotemporal dimensions. For example, any
model-building algorithm for the IoT environment should
account for the spatial dimensions of the data sources, mod-
elling for potential data redundancies, e.g., neighbouring nodes
measuring the same quantity. In addition, the developed tools
will deal with the temporal dimension and the dynamic nature
of the data being able to detect and adapt to changes of the
underlying data generating distribution

Page 6 of 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

IEEE INTERNET OF THINGS JOURNAL 7

The Testbed and Resources Repository contains relevant
information about available testbeds (federated through the
RAWFIE platform) and their resources, such as: (i) Testbed
name and testbed URL (if a dedicated access portal is also
available for a specific testbed), (ii) Description and overview
of each testbed facilities, and corresponding resources (e.g.,
available UxVs), (iii) Overview of the reservations linked to
each specific testbed, (iv) Description and overview of specific
resources (e.g., type, technologies, tests that can be executed,
and so on) for each given testbed and (v) Information on
the capabilities of a particular resource and its requirements
for executing experiments e.g. in terms of interconnectivity or
dependencies.

The Experiments and EDL Repository provides the neces-
sary functionalities for having the experiments and EDL re-
lated data stored into the data tier. The EDL scripts, templates
and pre-defined constraints are stored in the appropriate format
in order to be efficiently retrieved by the rest component of the
RAWFIE framework. It should be noted that the appropriate
metadata are adopted for each experiment. Finally, additional
repositories are adopted to store bookings, reservations of
resources as well as management of authorizations and access
rights. All the retrieved measurements of the executed exper-
iments are also stored in order to be the subject of further
processing.

VI. RAWFIE EXPERIMENTS MANAGEMENT

The Experiment Description Language (EDL) is a Do-
main Specific Language (DSL) for creating simple as well
as complex experiment scenarios for the IoT domain. The
EDL is designed for the RAWFIE purposes aiming to help
domain experts or non-experienced users (e.g., experimenters)
to effectively create and handle such type of scenarios. The
major goal of the EDL is the provision of a high level of
abstraction that shields experimenters from the complexities
of the underlying implementation of RAWFIE platform. In the
most interesting case, the EDL provides elements for handling
resource requirements/configuration, location/topology infor-
mation, task description, testbed-specific commands etc. Its
syntax is simple and combines some common characteristics
of well-known XML based languages. The EDL is built with
the help of the Xtext framework7. Figure 2 depicts a small
part of the proposed EDL grammar.

An experiment as realized through the EDL terminology is
seen to have the following parts:

• Metadata section. It contains generic information related
to each experiment like the name, the date, etc. This in-
formation is important to define the necessary description
for each experiment and, thus, to facilitate the efficient
management of the available experiments.

• Requirements section. it contains information related to
the requirements of each experiment in terms of the
testbed data, the location, the duration or the distance
that the nodes should cover during the experiment ex-
ecution. In addition, in this section, the experimenter
should define the number of nodes that will be involved

7https://eclipse.org/Xtext/

Fig. 2. A part of the EDL grammar.

in the experiment and, thus, the RAWFIE platform is
capable of knowing the needs for the experiments under
consideration.

• Declarations section. It concerns the necessary declara-
tions like constants and variables declaration adopted to
store data during the experiment execution. The discussed
declarations are the key element to connect the experi-
ment business logic with the data retrieved by UxVs and
perform processing in a higher level than the device itself.

• Execution section. It involves commands related to the
management of the core business logic of each experi-
ment. The EDL offers statements for the nodes or group
of nodes management. Every aspect of nodes / groups
behaviour can be realized with specific terminology in
the execution section. In addition, specific statements
are devoted to: (i) waypoints management; (ii) time line
management (e.g., sequential or parallel execution); (iii)
coordination management; (iv) control management (e.g.,
activation / deactivation of sensors); (v) configuration
management (e.g., data management in each node); (vi)
communication management (e.g., change in network
interfaces).

It should be noted that ‘typical’ commands originated in
legacy programming languages are also included in the EDL.
Hence, assignments, conditionals statements (i.e., if, switch)
and iterations (i.e., for, while) are also in place. In Figure 3, we
present a small part of an EDL script related to the definition
of the behaviour of a node.

On top of the EDL terminology, a textual editor is provided
in two modes: (i) a standalone version that works as an Eclipse
plugin and (ii) a Web based version. In both modes, the EDL
editor is responsible to provide the necessary functionalities
to the experimenters towards the creation, update, compilation
and validation of their experiments. The editor is a collection
of tools for defining experiments and authoring EDL scripts
through the RAWFIE Web portal or through Eclipse. Rich

Page 7 of 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

IEEE INTERNET OF THINGS JOURNAL 8

Fig. 3. A part of an EDL script.

Fig. 4. A part of an EDL script.

editing facilities are supported together with an advanced
content assist and checking mechanism at syntax time. The
EDL keywords are highlighted with different color while the
code folding functionality enables blocks of code to be hidden
or expanded at will. Some of the provided functionalities
are: (i) syntax coloring; (ii) content assist; (iii) validation
and quick fixes; (iv) code completion; (v) error checking. A
set of additional tools for syntactic and semantic validation
are also available. The editor gives ‘access’ to the EDL
concepts through which an experiment will be defined. Future
enhancement is the synchronization of the textual editor with
a visual editor where experimenters will have the opportunity
to define nodes routes and other related information directly
on map of the area under consideration. In Figure 4, we see
a snapshot of the provided editor where the content assist
functionality gives us hints about the upcoming commands
that should be inserted in an experiment.

The EDL validator is responsible for performing syntactic
and semantic analysis on the provided EDL scripts. The
validation will be performed on top of the proposed EDL
model that will be based on the EDL grammar. The validator
accesses the provided script and identify any semantic errors
that could jeopardize the execution of the experiment. Specific

constraints should be fulfilled when the experiment workflow
is defined. These constraints are continuously checked by the
proposed editor and in case some of them are validated to be
false, the errors will be presented to the experimenters through
various means (e.g., warnings). Finally, when no errors are
present, the component will have the opportunity to generate
specific files e.g., part of the final code to be uploaded in the
UxVs, input to the validator, input to the Testbed Proxy). The
main responsibilities of the component are:

• It provides syntactic and semantic validation of each
experiment workflow.

• It applies a set of constraints that should be met in order
to have a valid experiment.

• It is capable of applying semantic checking for nodes
communication, spatio-temporal management, sensing
and data management.

• It performs code generation in the appropriate format in
order to be uploaded into the RAWFIE nodes.

Schedules and launches executions of the experiments to-
gether with the assigned booked resources The Launching
Service is responsible for scheduling the execution of experi-
ments. It supports two aspects of launching:

1) Short-term launching: The service through a specific in-
terface gives the opportunity to experimenters to execute
in real time pre-defined and pre-approved experiments
stored in the RAWFIE system. It should be noted
that this functionality is available if the corresponding
testbed is already configured (i.e., UxVs are in place and
the necessary code is uploaded to nodes).

2) Long-term launching: The service identifies which ex-
periment should be executed according to the available
bookings. It should be noted, that the Launching Ser-
vice executes only authorized and approved experiments
based on spatio-temporal constraints.

The Experiment Controller is responsible to monitor the
smooth execution of each experiment. The main task is the
monitoring of the experiment execution while acting as ‘bro-
ker’ between the experimenter and the resources in (near)
real time. The Experiment Controller provides capabilities
to support ‘complex’ experiments possibly involving multiple
testbeds as well as to support the manual override of specific
instructions to the resources while the experiment is running.
The Experiment Controller identifies if the experiment runs
smoothly and will inform the upper layer in order to present
the necessary information to the experimenter. In addition,
the Experiment Controller controls the data sent back by the
nodes. Hence, the Experiment Controller, among others, will
have access in the Data tier in order to be capable of retrieving
the necessary data. The use of the Experiment Controller in
the middle tier gives RAWFIE the opportunity to include
more intelligence in the functionalities provided related to
the execution of the experiments and the level description to
waypoints (e.g., implement patterns of vehicle movement like
expanding ring).For instance, the system could have a view on
the correct execution of the experiment workflow, to combine
multiple UxV / Testbed types in the same experiment or to be
able to monitor the execution of more complex scenarios.

Page 8 of 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

IEEE INTERNET OF THINGS JOURNAL 9

VII. RAWFIE GRAPHICAL USER INTERFACE

A. Portal

The RAWFIE Portal provides a Web interface to federation
resources and services. The goal of the Portal is to provide
a user-friendly Graphical User Interface (GUI), acting as a
central point of access to all the necessary resources and
services used by the experimenters. Another objective of the
Portal is to illustrate all the essential information for the RAW-
FIE federation that the experimenters should take advantage
of, in a straightforward manner. A well-organized tutorial
and any other kind of documentation needed is provided to
the experimenters for considering the design, the use and
the variety of resources, the testbed facilities, any available
real experiment or simulation tools, for data refinement and
replication of their experiments, etc. For instance, a wiki could
be used as repository of information related but not limited to
the RAWFIE design, the experimenters potentiality, the testbed
facilities and the resources supported. These functionalities
are available to all possible future experimenters that may
be interested in RAWFIE federation and want to explore its
capabilities. The initial central starting place for the authen-
ticated experimenters of the RAWFIE infrastructure is the
browsing of the available testbed facilities and their resources.
An experimenter will be able to discover either in a simple
drop down list or in a more elaborated visualized way the
availability of the active testbed facilities. Furthermore, for the
active resources, information such as their current status, (e.g.,
battery state), and their technical capabilities (e.g., sensing
facilities), will be also available to the experimenters.

A Visualization Engine is provided to process the received
resource traces and dispatches the result to the visualization
tool of the Front End tier. This engine is a software consisting
of several sub-modules and data components (related to the
raw data from UxV on board sensors) with rendering for
high-fidelity real-time data visualization in 2D or/and 3D.
Additionally, the Visualization Engine can be used for creating
and managing collaborative sensing missions, working on
desktop computers for the operator to have the full view of the
sensed information and also on the web for the visualization
of the experiments results.

The Booking functionality allows experimenters to book
a spatiotemporal interval (Figure 5) for running their exper-
iments, thus, providing automatic coordination in the use of
the testbed resources among experimenters. Experimenters are
allowed to access the testbed list first and, for a given testbed,
reserve the UxV resources required for the execution of the
defined experiment beforehand through the experiments editor
tool. By making use of suitable software interfaces provided by
the Data Tier, the Booking tool should query the data storage
in order to:

1) Visualize, in a calendar view, the available dates and
timeslots for each testbeds resources

2) Select the preferred date, timeslot and space fragment
in a testbed (based on the availability of the required
nodes) to execute the desired experimentation scenario

Once the triplet (date, timeslots/duration, space/sub-space)
is chosen and booked for a testbed, the reserved resources

Fig. 5. Experiments in spatiotemporal intervals.

of the corresponding testbed, from that time on, will not be
available for any other experimenter. Hence, busy or available
UxV nodes per timeslot on a given testbed are easily iden-
tified by the experimenters as ‘booked’ or ‘available’. The
association with the chosen experimentation scenario to run
is visible as well. It is possible to edit, enhance and add
new experimentation scenarios based on the reserved resources
from the selected testbed as well as to bind a part or even
the entire testbed to the related experimentation scenarios
in any available timeslots. Additional functionalities such as
notification mechanisms to remind to the experimenter the
date and the timeslot allocated for running his/her experiment
on the RAWFIE infrastructure should also be envisaged to
improve the user experience.

Furthermore, the Monitoring Tool manages the presentation
of the information needed for monitoring the status of the
nodes and the data collected during the experiments. Moreover,
specific parameters calculated as part of the experiments
outcomes (e.g., benchmark parameters concerning the quality
of the network, and the performance of the adopted com-
munication technologies) are also presented. An example of
information for the current status of each of the resources in
a given testbed could be the energy reserves, the status of the
different networking and sensing modules and the position in
the testbed site.

Finally, the Data Analysis Tool starts data analysis learning
tasks and displays their results, visualizes data from the ‘Mea-
surements, Results, Status’ repository, browses the results from
past analysis, provides commands to the Data Analysis Engine
and specifies data analytical/learning tasks to be executed on
specific streaming datasets.

VIII. CONCLUSION

RAWFIE will be the first federation that will combine
different real-world testbeds of unmanned vehicles into a
common framework for performing experiments in terrestrial,
aerial and maritime environments. It will be diverse by com-
bining different UxV technologies and resources, spanning
the spectrum of wireless technologies available today. The
RAWFIE architecture is quite flexible, with explicitly defined

Page 9 of 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

IEEE INTERNET OF THINGS JOURNAL 10

procedures and system interfaces that makes it easy to incorpo-
rate additional technologies, including those that do not exist
today.

RAWFIE aims to be a cloud-based infrastructure where
each interested/signed experimenter gathers resources into its
own isolated ’slice’ and then configures them to support
the designed experiment(s). RAWFIE components either on
the middle tier or on the front end tier will be offered to
users as Infrastructure as a Service (IaaS) and Platform as a
Service (PaaS) respectively. Given the state of the art on the
cloud computing technologies the objective of the RAWFIE
project is to adapt different existing technologies in order
to achieve better scalability and performance by providing
excellent speed of computations and high availability as well.
Moreover, such a virtualized approach ensures the provision
of reliable and flexible backup/recovery solutions. The data
reside on the cloud and not on physical devices simplifying
the process of storing and recovering data and also helps in
the avoidance of networking issues that frequently arise in
distributed data gathering schemes.

ACKNOWLEDGMENT

This project is funded by the European Commission (FIRE+
challenge, Horizon 2020) that aims to provide for research,
technological development and demonstration under grant
agreement no 645220 (RAWFIE)

REFERENCES

[1] K. Goldberg, “Robotics: Countering singularity sensationalism,” Nature,
vol. 526, no. 7573, pp. 320–321, 2015.

[2] M. Dunbabin and L. Marques, “Robots for environmental monitoring:
Significant advancements and applications,” Robotics & Automation
Magazine, IEEE, vol. 19, no. 1, pp. 24–39, 2012.

[3] B. Grocholsky, J. Keller, V. Kumar, and G. Pappas, “Cooperative air and
ground surveillance,” Robotics & Automation Magazine, IEEE, vol. 13,
no. 3, pp. 16–25, 2006.

[4] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A vision of iot:
Applications, challenges, and opportunities with china perspective,”
IEEE Internet of Things Journal, vol. 1, no. 4, pp. 349–359, 2014.
[Online]. Available: http://dx.doi.org/10.1109/JIOT.2014.2337336

[5] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[6] A. Zanella, N. Bui, A. P. Castellani, L. Vangelista, and M. Zorzi,
“Internet of things for smart cities,” IEEE Internet of Things
Journal, vol. 1, no. 1, pp. 22–32, 2014. [Online]. Available:
http://dx.doi.org/10.1109/JIOT.2014.2306328

[7] J. A. Stankovic, “Research directions for the internet of things,” IEEE
Internet of Things Journal, vol. 1, no. 1, pp. 3–9, 2014. [Online].
Available: http://dx.doi.org/10.1109/JIOT.2014.2312291

[8] Y. Al-Hazmi, A. Willner, O. O. Ozpehlivan, D. Nehls, S. Covaci, and
T. Magedanz, “An automated health monitoring solution for future inter-
net infrastructure marketplaces,” in 2014 26th International Teletraffic
Congress (ITC), Karlskrona, Sweden, September 9-11, 2014, 2014, pp.
1–6.

[9] G. Gonzalez, R. Perez, J. Becedas, M. J. Latorre, and F. Pedrera,
“Measurement and modelling of planetlab network impairments for
fed4fire’s geo-cloud experiment,” in 2014 26th International Teletraffic
Congress (ITC), Karlskrona, Sweden, September 9-11, 2014, 2014, pp.
1–4.

[10] G. Coulson, B. Porter, I. Chatzigiannakis, C. Koninis, S. Fischer, D. Pfis-
terer, D. Bimschas, T. Braun, P. Hurni, M. Anwander, G. Wagenknecht,
S. P. Fekete, A. Kröller, and T. Baumgartner, “Flexible experimentation
in wireless sensor networks,” Commun. ACM, vol. 55, no. 1, pp. 82–90,
2012.

[11] R. Perrey and M. Lycett, “Service-oriented architecture,” in Applications
and the Internet Workshops, 2003. Proceedings. 2003 Symposium on.
IEEE, 2003, pp. 116–119.

[12] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana, “Unraveling the web services web: an introduction to soap,
wsdl, and uddi,” IEEE Internet computing, no. 2, pp. 86–93, 2002.

[13] R. Fielding, “Representational state transfer,” Architectural Styles and
the Design of Netowork-based Software Architecture, pp. 76–85, 2000.

[14] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research on
cloud robotics and automation,” Automation Science and Engineering,
IEEE Transactions on, vol. 12, no. 2, pp. 398–409, 2015.

[15] D. Scaramuzza, M. Achtelik, L. Doitsidis, F. Friedrich, E. Kosmatopou-
los, A. Martinelli, M. Achtelik, M. Chli, S. Chatzichristofis, L. Kneip,
D. Gurdan, L. Heng, G. Lee, S. Lynen, M. Pollefeys, A. Renzaglia,
R. Siegwart, J. Stumpf, P. Tanskanen, C. Troiani, S. Weiss, and
L. Meier, “Vision-controlled micro flying robots: From system design
to autonomous navigation and mapping in gps-denied environments,”
Robotics Automation Magazine, IEEE, vol. 21, no. 3, pp. 26–40, Sept
2014.

[16] A. Amanatiadis, S. Chatzichristofis, K. Charalampous, L. Doitsidis,
E. Kosmatopoulos, P. Tsalides, A. Gasteratos, and S. Roumeliotis, “A
multi-objective exploration strategy for mobile robots under operational
constraints,” Access, IEEE, vol. 1, pp. 691–702, 2013.

[17] A. Kapoutsis, S. Chatzichristofis, L. Doitsidis, J. de Sousa,
J. Pinto, J. Braga, and E. Kosmatopoulos, “Real-time adaptive
multi-robot exploration with application to underwater map
construction,” Autonomous Robots, pp. 1–29, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s10514-015-9510-8

[18] E. Kosmatopoulos, M. Papageorgiou, A. Vakouli, and A. Kouvelas,
“Adaptive fine-tuning of nonlinear control systems with application to
the urban traffic control strategy tuc,” IEEE Trans. Contr. Syst. Technol.,
vol. 15, no. 6, pp. 991–1002, 2007.

[19] E. Kosmatopoulos, “An adaptive optimization scheme with satisfactory
transient performance,” Automatica, vol. 45, no. 3, pp. 716–723, 2009.

[20] E. Kosmatopoulos and A. Kouvelas, “Large-scale nonlinear control
system fine-tuning through learning,” IEEE Trans. Neural Netw., vol. 20,
no. 6, pp. 1009–1023, 2009.

[21] A. Renzaglia, L. Doitsidis, A. Martinelli, and E. Kosmatopoulos, “Multi-
robot 3d coverage of unknown areas,” Int. J. Robot. Res., vol. 31, no. 6,
pp. 738–752, 2012.

[22] L. Doitsidis, S. Weiss, A. Renzaglia, M. W. Achtelik, E. Kosmatopoulos,
R. Siegwart, and D. Scaramuzza, “Optimal surveillance coverage for
teams of micro aerial vehicles in gps-denied environments using onboad
vision,” Auton. Robot., vol. 33, no. 1-2, pp. 173–188, 2012.

[23] S. Weiss, M. Achtelik, L. Kneip, D. Scaramuzza, and R. Siegwart,
“Large-scale nonlinear control system fine-tuning through learning,”
Journal of Intelligent & Robotic Systems, vol. 61, pp. 473–493, 2011.

[24] A. Kapoutsis, S. Chatzicristofis, L. Doitsidis, J. Sousa, J. Pinto, J. Braga,
and E. Kosmatopoulos, “Real-time adaptive multi-robot exploration with
application to underwater map construction,” Autonomous Robots.

[25] J. R. Martinez, A. Renzaglia, A. Spalanzani, A. Martinelli, and
C. Laugier, “Navigating between people: a stochastic optimization
approach,” in Proc. IEEE Int. Conf. Robot. Autom., St. Paul, MN, USA,
2012.

[26] A. Amanatiadis, S. Chatzichristofis, K. Charalampous, L. Doitsidis,
E. Kosmatopoulos, F. Tsalides, A. Gasteratos, and S. Roumeliotis, “A
multi-objective exploration strategy for mobile robots under operational
constraints,” IEEE Access, no. 99, pp. 1–1, 2013.

[27] S. Chatzicristofis, A. Kapoutsis, E. Kosmatopoulos, L. Doitsidis,
D. Rovas, and J. Sousa, “The noptilus project: Autonomous multi-
auv navigation for exploration of unknown environments,” in IFAC
Workshop on Navigation, Guidance and Control of Underwater Vehicles
(NGCUV2012), vol. 3, 2012, pp. 373–380.

Page 10 of 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

